skip to main content


Search for: All records

Creators/Authors contains: "Stokey, Megan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The anisotropic permittivity parameters of monoclinic single crystal lutetium oxyorthosilicate, Lu2SiO5 (LSO), have been determined in the terahertz spectral range. Using terahertz generalized spectroscopic ellipsometry (THz-GSE), we obtained the THz permittivities along the a, b, and c⋆ crystal directions, which correspond to the εa, εb, and εc⋆ on-diagonal tensor elements. The associated off diagonal tensor element εac⋆ was also determined experimentally, which is required to describe LSO's optical response in the monoclinic a–c crystallographic plane. From the four tensor elements obtained in the model fit, we calculate the direction of the principal dielectric axes in the a–c plane. We find good agreement when comparing THz-GSE permittivities to the static permittivity tensors from previous infrared and density functional theory studies.

     
    more » « less
    Free, publicly-accessible full text available January 15, 2025
  2. Electron effective mass is a fundamental material parameter defining the free charge carrier transport properties, but it is very challenging to be experimentally determined at high temperatures relevant to device operation. In this work, we obtain the electron effective mass parameters in a Si-doped GaN bulk substrate and epitaxial layers from terahertz (THz) and mid-infrared (MIR) optical Hall effect (OHE) measurements in the temperature range of 38–340 K. The OHE data are analyzed using the well-accepted Drude model to account for the free charge carrier contributions. A strong temperature dependence of the electron effective mass parameter in both bulk and epitaxial GaN with values ranging from (0.18 ± 0.02) m0 to (0.34 ± 0.01) m0 at a low temperature (38 K) and room temperature, respectively, is obtained from the THz OHE analysis. The observed effective mass enhancement with temperature is evaluated and discussed in view of conduction band nonparabolicity, polaron effect, strain, and deviations from the classical Drude behavior. On the other hand, the electron effective mass parameter determined by MIR OHE is found to be temperature independent with a value of (0.200 ± 0.002) m0. A possible explanation for the different findings from THz OHE and MIR OHE is proposed.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Mueller matrix spectroscopic ellipsometry is applied to determine anisotropic optical properties for a set of single-crystal rhombohedral structure α-(Al x Ga 1− x ) 2 O 3 thin films (0 [Formula: see text] x [Formula: see text] 1). Samples are grown by plasma-assisted molecular beam epitaxy on m-plane sapphire. A critical-point model is used to render a spectroscopic model dielectric function tensor and to determine direct electronic band-to-band transition parameters, including the direction dependent two lowest-photon energy band-to-band transitions associated with the anisotropic bandgap. We obtain the composition dependence of the direction dependent two lowest band-to-band transitions with separate bandgap bowing parameters associated with the perpendicular ([Formula: see text] = 1.31 eV) and parallel ([Formula: see text] = 1.61 eV) electric field polarization to the lattice c direction. Our density functional theory calculations indicate a transition from indirect to direct characteristics between α-Ga 2 O 3 and α-Al 2 O 3 , respectively, and we identify a switch in band order where the lowest band-to-band transition occurs with polarization perpendicular to c in α-Ga 2 O 3 whereas for α-Al 2 O 3 the lowest transition occurs with polarization parallel to c. We estimate that the change in band order occurs at approximately 40% Al content. Additionally, the characteristic of the lowest energy critical point transition for polarization parallel to c changes from M 1 type in α-Ga 2 O 3 to M 0 type van Hove singularity in α-Al 2 O 3 . 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract

    Polar dielectrics are key materials of interest for infrared (IR) nanophotonic applications due to their ability to host phonon‐polaritons that allow for low‐loss, subdiffractional control of light. The properties of phonon‐polaritons are limited by the characteristics of optical phonons, which are nominally fixed for most “bulk” materials. Superlattices composed of alternating atomically thin materials offer control over crystal anisotropy through changes in composition, optical phonon confinement, and the emergence of new modes. In particular, the modified optical phonons in superlattices offer the potential for so‐called crystalline hybrids whose IR properties cannot be described as a simple mixture of the bulk constituents. To date, however, studies have primarily focused on identifying the presence of new or modified optical phonon modes rather than assessing their impact on the IR response. This study focuses on assessing the impact of confined optical phonon modes on the hybrid IR dielectric function in superlattices of GaSb and AlSb. Using a combination of first principles theory, Raman, FTIR, and spectroscopic ellipsometry, the hybrid dielectric function is found to track the confinement of optical phonons, leading to optical phonon spectral shifts of up to 20 cm−1. These results provide an alternative pathway toward designer IR optical materials.

     
    more » « less
  7. null (Ed.)